Lab-on-a-chip devices could dramatically reduce COVID-19 detection times

Updated: Jan 29

The breakthrough would allow for the integration of biosensors to smartphones, potentially improving the speed and reliability of the contact tracing system

Newly developed biosensor devices linked to smartphones could help medical practitioners dramatically cut down the real-time detection rates in the battle against COVID-19 and other future viral outbreaks.

Scientists and engineers from The University of Manchester have created a novel Computational Fluid Dynamics (CFD) platform to aid biosensor devices to detect biological species and help control the spread of virus outbreaks. The approach could help track and trace people with infection while a vaccine breakthrough could still be many months away.

Various global strategies are in place across the world to help curb the spread of COVID-19, with a coordinated effort involving; population modelling, face mask usage and developing ventilator capacity. Modelling and simulation experts at The University of Manchester have now developed an additional tool.

Findings published in the prestigious Journal of Biosensors and Bioelectronics, demonstrate a novel numerical platform as a new design for biosensor devices. This new system simulates the performance of electronic devices in different design and operating conditions to improve contact tracing within the population.

This breakthrough would allow for the integration of biosensors to existing smartphones with the potential ability to improve the speed and reliability of the existing contact tracing system. It would also help to contain any other virus-related disasters and pandemics in the future through the same method.

Biosensors are one of the most effective ways for detection of a biological species and controlling its spread The biosensors works via targeted molecules causing chemical reactions with biological recognition element on the surface of the biosensor. Transducer transforms the biomolecule-analyte interaction into a measurable optical or electrical signal. These systems decrease the sample of reagent consumptions, shorten the time of experiments, and reduce the overall costs of applications.





8 views0 comments